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ABSTRACT 

RECONSTRUCTION OF 3D IMAGE FOR PARTICLES BY 

THE METHOD OF ANGULAR CORRELATIONS FROM 

XFEL DATA 
 

by 

Sung Soon Kim 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Dilano K. Saldin 

 

 

The world’s first X-ray Free Electron Laser (XFEL), the Linac Coherent Light Source 

(LCLS) at the Stanford Linear Accelerator Center (SLAC), is now generating X-ray pulses 

of unprecedented brilliance (one billion times brighter than the most powerful existing 

sources), and at the amazing rate of only a few femtoseconds [2]. The first such 

experiments are being performed on relatively large objects such as viruses, which produce 

low resolution, low-noise diffraction patterns on the basis of the so called “diffraction 

before destruction” principle. Despite the promise of using XFEL for the determination of 

the structures of viruses, the results so far from experimental data present difficulties in 

working to reconstruct 3D images for the viruses by our method. One of the rare instances 

in which images are reconstructed from experimental data is the mimi virus work of Hajdu 

et al, [56]. In this present paper, we examine the capabilities of the method that is based on 

the angular momentum decomposition of scattered intensities, which enables us to 

overcome common problems such as missing or imperfect data that are inevitable in 

experiments. This angular momentum decomposition method helps to avoid the effect of a 
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finite beam size, and existing gap size. In addition to the problem caused by the finite 

panels of detectors used when the data are collected, the effect of noise, curved Ewald 

Sphere, shot to shot variations of incident X-ray pulse intensities and shots to multiple 

nano particles are also studied. 
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Chapter 1 

INTRODUCTION  

The advent of X-ray free electron lasers (XFELs) such as Linac Coherent Light Source 

(LCLS) [1,2] produces X-rays of a brightness some ten billion times [3,4] greater than any 

pre-existing X-ray source (including synchrotrons), and a few femtoseconds duration. It 

has been suggested that such pulses could avoid the damage process and allow structure 

determinations without crystallization of bioparticles such as proteins, viruses and amino-

acids. Reconstructing 3D image of a microscopic entity such as a virus from randomly 

oriented many ultrashort diffraction patterns (DPs) generated by XFEL as 2D data has 

been proposed in different ways. There are some ways to reconstruct 3D structures from 

completely randomly and uniformly oriented diffraction snapshots such as Manifold 

Embedding by Diffusion Map [5][6][7], EMC (Expand, Maximize and Compress)[8] or 

Angular Correlation method [9,10]. Manifold Embedding by Diffusion Map is an 

alternative approach in order to extract the structure of biological particles such as viruses 

from diffraction patterns with random orientations. This method is basically a nonlinear 

PCA (Principle Component Analysis) technique, which generates a manifold from a cloud 

of points where each point is a diffraction snapshot in the dataset. In fact, diffusion map 

provides a mathematical link to the symmetrized icosahedral Wigner D-functions [24], 

which are applied to extract the orientations of snapshots, and then those orientations are 

used to recover 3D structure of the object. EMC is another algorithm for 3D structural 

recovery from diffraction patterns. Through the EMC algorithm, a 3D intensity volume is 

iteratively updated by Expansion, Maximization and Compression. These three iterative 

steps map the 3D intensity model to a tomographic representation and the reconstructed 
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intensity that is used for phasing and extract the structure. Angular correlations that we 

prefer to use here are the products of two or three vectors, whose elements represent 

intensities in diffraction patterns. These correlations are independent of particle orientation 

and therefore ideal for the XFEL problem. It has been found possible to reconstruct a 3D 

image of the particle in an arbitrary orientation from these orientation independent 

quantities. In most cases, the analysis of XFEL diffraction pattern proposed so far would 

be so-called single particle methods. Thus, methods have to be developed for eliminating 

diffraction patterns from both zero and multiple particle hits. In contrast with the method 

of angular correlations, all that is necessary is to eliminate hits on zero particles and as the 

method is capable of more efficiently utilizing available data. Another advantage of the 

method working with the angular momentum representation is that it is possible to devise a 

simple test on whether the measured signal is coming mainly from an icosahedral particle, 

which is a symmetry associated with many viruses [11]. The point is that many of the low-

order angular momenta (e.g. l=2, l=4) cannot be summed to produce signals consistent 

with an icosahedral scattering (the odd values of l are forbidden by Friedel’s Law [12,13]). 

If the measured signal is really from an icosahedral object, the angular momenta of the 

representation of the diffraction volume have to be dominated by l=0, and l=6 terms, and 

the ratio of these term with those of l=2 and l=4, may help quantify how much of the signal 

is from an icosahedral scatterings and how much from stray scattering from e.g. apertures 

or non-icosahedral parts of the structure, etc. What is more, the low q data is dominated by 

isotropic scattering corresponding to l=0, a fact that may allow us to fill in the missing data 

in the beam stop by an appropriate analytical model.   Through this angular correlation 

method, we developed a series of algorithms to reconstruct the 3D image of the objects 



www.manaraa.com

 

3 
 

such as STNV (Satellite Tobacco Necrosis Virus) [14], PBCV-1 (Paramecium Bursaria 

Chlorella Virus1) [15], RDV (Rice Dwarf Virus) [16] or Nanorice particles [17] using 

computer simulated diffraction patterns from those models. The developed algorithms have 

shown the successful procedures in reconstructing 3D images of the models. However, 

even though LCLS has been producing real experimental diffraction patterns for some 

years now, the effort to reconstruct the 3D images of those models turned out to be a bit 

disappointing. Thus in this dissertation, we look for the discrepancies between the 

simulated data and the real experimental data. In addition, we also try to find the remedies 

to resolve the discrepancies by adding some artifacts to the simulated data such as the 

effects of noise, a curved Ewald Sphere [18], the absence of central intensities, or shot-to-

shot variations in the incident X-ray intensities when we access the algorithms that have 

already developed and tested. The appropriate methods adjusting these effects should be 

adopted to achieve the goal. Especially for the small sized sample such as STNV with 

comparatively large scattering angles from an X-ray shot, more detailed treatments 

calculating intensities on a curved Ewald Sphere in the reciprocal space must be 

considered to generate the simulated data, which will help handling the real experimental 

diffraction patterns. We develop this packet of treatments for icosahedral viruses by taking 

a twelve atom cluster, STNV virus and PBCV-1 as samples to generate diffraction patterns 

testing through laptop computers, AVI or MORTIMER many core cluster supercomputer 

in UWM or Sherlock minicomputer in the department. In the case of noise, we assume 

Poisson noise in the intensities of Cartesian grid points where the detectors are placed. 

Once the noise effect appears not to deform the original shape of the sample, we lower the 

intensities on the outer most polar grid points to check on how effect of Poisson noise 
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affects the 3D imaging in the real space and how much we can lower the intensities to keep 

the original sample shape in the 3D images. Crucial to the treatment of Poisson noise is 

that the average of the correlations, which is what one evaluates from the experimental 

data, is the same as the correlation of the average intensities. Here there is some confusion 

in the literature. While in general there is no guarantee that this is so, in practice it does 

seem to be obeyed for intensities dominated by Poisson noise as is the case for any 

practical correlations, as we have demonstrated by computer to about 4 significant figures. 

Next, the curved Ewald Sphere (ES) in the reciprocal space is examined to testify that if 

the scattering angles are big enough to change the calculations for the angular correlations 

of intensities on the Cartesian grid points, the curvature of the ES will play an important 

role of the treatments. For the multi particle coherent and incoherent scattering case, two 

nanorice particle samples that are azimuthally symmetric are adopted to verify if the 

simulated diffraction patterns come into play along the algorithms that have been already 

developed.  Finally, we put some bad artifacts in to the simulated data to resemble the 

experimental data so that these calculation methods will be useful in 3D reconstructions of 

nanoparticles. Here, comparisons are introduced between the real experimental diffraction 

patterns and simulated patterns where those bad artifacts are included, which will help 

understand how to deal with the data in reality. What we really focus on in this paper is the 

methodology how to overcome the discrepancies appearing in handling real experimental 

data with the algorithms that have been developed through simulated diffraction patterns. 

Computer generated simulated data showed well behaved tendencies following 

mathematical formats and expected styles of the results. One of the main stream of the 

methods to overcome the stated discrepancies is to test the simulated data after making 
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them the same as the real ones. For one instance, in the case of shot to shot variations of 

incident X-ray pulse intensities, we give Gaussian intensity variations to the incident X-ray 

by multiplying a Gaussian amplitude factor instead of using flat plain incident X-ray pulses 

when we generated computer simulated data. After adding this artifact, we tested it to 

make the 3D reconstructed structural image of the object acceptable. Another example is 

the simulated data with Poisson noise to mimic the noise that has always appeared in real 

experimental data. Assuming that we can only have ten or twenty thousand of 

experimental DPs with very small number of photons counted on the detector, we 

examined if the 3D reconstructed imaging procedures can successfully achieved with these 

many DPs of low level of photon counts. In the caption of each image, R-factor [19] is 

calculated to check the discrepancies between the input amplitudes and output amplitudes 

in the reciprocal space. Also in the reality, all DPs have lost central intensities. To 

overcome this deficiency, we extrapolated the DPs into the beam stops and checked if 

those complemented DPs can help reconstructing 3D structural images of objects. In 

chapter 7, we used RDV experimental diffraction patterns from LCLS to reconstruct the 

3D image through the algorithms stated in the previous chapters in which the remedies for 

the artifacts are introduced. The difference between simulated data and experimental ones 

of RDV are so big that every single step of whole calculating procedures has been treated 

very carefully to attain a decent 3D reconstructed structural image. Once all the procedures 

had been done, we could get a decent 3D image of RDV (Rice Dwarf Virus) with 

icosahedral symmetry which is checked by Bl-values [20,21]. We found that the size of 

RDV from the reconstructed image is almost the same as we expected even though the 

shape is not a perfect icosahedron. There are still important limits to find 3D structural 
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image of nanoparticles through XFEL without using symmetric property or some 

constraints in performing the algorithm. In our algorithm, we also impose icosahedral 

symmetry in getting a diffraction volume consisting of intensities in the reciprocal space. 

Being free from imposing symmetries and constraints to find the original images of the 

objects are to be discussed further more with all researchers. In the final chapter, we list a 

couple of issues for the future, to pursue in developing new algorithms to handle real 

experimental data more efficiently and successfully. 
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Chapter 2 

Formulation of Angular Correlation 

2.1 Correlation Theory 

A data set consisting of N Cartesian Diffraction Patterns of random particle orientations are 

needed for the reconstruction of the full 3D structure. We follow the approach based on the 

analysis of the average angular correlation J(q,ϕ; q,ϕ+∆ϕ) over all diffraction patterns of 

the measured intensities at two pixels specified by (q,ϕ) and (q,ϕ+∆ϕ) on each diffraction 

pattern, as illustrated in Fig 1. The 3D distribution of scattered intensity in the reciprocal 

space may be expanded as a sum of spherical harmonics [22], Ylm(θ,ϕ), namely 


lm

lmlm YqIqI ),()()(                 (1) 

The intensity in a particular diffraction pattern is a saucer shaped slice through this     

distribution, representing a part of the Ewald sphere S1 corresponding to an incident X-ray 

wave vector antiparallel to the Z axis as in Fig 2. Any point on this sphere may be 

specified by the polar coordinates defined with respect to the [x, y, z] frame. Since the 

Ewald sphere is a 2D manifold [23], only two of the three coordinates are independent. 

Indeed, geometrical considerations show that the intensity on the red Ewald sphere in Fig 2 

may be written as  


lm

lmlm YqIqI ),()(),(        (2) 
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Fig 1. A diffraction pattern pixel may be labeled by the magnitude q of the 

scattering vector, and an azimuthal angle ϕ in the frame of reference attached to 

the diffraction pattern. A set of intensity cross -correlations may be constructed 

by multiplying the intensities Iqϕ and Iq’ϕ’ on each diffraction pattern (w) and 

summing over all diffraction patterns. 

 

. 

 

  

 

 

 

 

 

 

 

Fig 2. Construction of a 3D diffraction volume from Ewald spheres of random 

orientation is illustrated. Two Ewald Sphere sections, corresponding to incident 

X-ray antiparallel to z and z’ axis are denoted by S1 and S2 above. A large 

number of such randomly oriented diffraction patterns allow the assignment of 

scattered intensity to all points in a 3D volume of reciprocal space. 
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The diffraction intensities would lie on a portion of the Ewald sphere (S1) of radius equal to 

the wave number K = 2𝜋/𝜆 , where λ is the wave length of the x-rays. Sets of points on each 

Ewald sphere may be specified by polar, azimuthal angles and radial distance q. According to 

Fig 3, polar angle θ depends on the radial distance q: 

    θ(q) = π/2 – sin-1(q/2K)                  (3)  

 

 

 

 

 

Fig 3. Section through the Ewald sphere S1, viewed antiparallel to X-axis 

 

Thus the measured intensities in a diffraction pattern arising from radiation incident 

antiparallel to the z-axis is 

    
lm

lmlmz qYqIqI )),(()(),(        (4) 

Now, consider the cross-correlation J(q,ϕ; q’,ϕ’) with N number of diffraction patterns 

with each Wth molecular orientation may be written as  

    
W

WW qIqI
N

qqJ )','(),(
1

)'';,(      (5) 
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which may be computed from the experimental data without knowledge of the orientation 

of the individual particle. Considering the random orientations of the different particles, 

Eq. (5) can be rewritten as  


''''''

''''''''''''''

'

**

'

*

' )'),'('()()),(()(
1

)',';,(
mml

mlml

w

mml

w lmm

lmlm

w

lmm qYqIDqYqID
N

qqJ   (6) 

The Wigner D functions Dw [24] which are functions of three Euler angles specifying the 

orientations of the molecule. Performing the sum over all W, effectively a sum over the 

space of all the elements of the SO(3) group [25], and applying the orthogonality theorem 

[26] (see e.g. Tinkham 2003), we find 

    
''''''''''''

*

'
12

11
mmmmll

w

w

mlm

w

lmm
l

DD
N




                (7) 

Performing the sum (6) using (7) with |'|   will lead to  

     
l

ll qqBqqFqqJ )',(),',(),',(                 (8) 

where 

]cos)'('sin)(sin)'('cos)([cos
4

1

)'),'('()),((
12

1
),',( *









 

qqqqP

qYqY
l

qqF

l

m

lmlml

    (9) 

From Fig3, ).'('
2

)( qq 


    For a flat Ewald Sphere [27], therefore (9) becomes  

).(cos
4

1
),',( 


  ll PqqF               (10) 

Where Pl  is a Legendre Polynomial of order l, and 
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      
l

lqqqq BFJ  ''
                (11) 

Angular cross correlations of the intensities can be found from Eq. (5) and all elements of 

the matrix F consists of real valued Legendre Polynomials. Thus, the Eq. (8) is purely real, 

and may be solved for the real coefficients by Bl through matrix inversion;  

      







 ',

1}{ qqll JFB                                      (12)  

Fig 4.  Plot Bl vs. l at q ≈ 0.06Å
-1

 from the simulated 10000 diffraction patterns 

for STNV virus extracted from PDB (Protein Data Bank) file (Entry No.= 

2BUK) whose radius is R ≈ 100A. At l = 0 and 6, the peaks appear the strongest. 

 

2.2 Numerical Tests for the Angular correlation parameters 

 

We tested our approach of 3D reconstruction of icosahedral virus to a realistic model from 

PDB entry 2BUK. First we calculated the amplitude A(q) of the scattered X-ray on the flat 

ES using PDB file consisting of atoms and their coordinates via Eq. (13),  

  


























4

1

2

4
exp)(with )exp()()(

i

iij

j

j c
q

baqfrqiqfqA


           (13) 
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where ai, bi and c are Cromer-Mann’s coefficients [28] that are specified by each atom in 

the sample, by squaring them to get the intensities on the Cartesian grids. Next, converting 

these intensities 
2

)()( qAqI   into the intensities on the polar grids to get the angular 

correlation, Jq,q’,∆ϕ (we will refer to this C2 (q,q’,∆ϕ) hereafter) by Eq. (10), enables us to 

find the Bl’s by Eq. (12) through F matrix of Legendre polynomials inversion by Eq. (9), 

which we need to get the diffraction volume representing intensities on the reciprocal 

space. To get Bl, one can use the orthogonality of Legendre polynomials for convenience. 

Since we do not have to use large square matrix, which becomes the integral Eq. (14), 

since each element in the inversion matrix of F-1 is generated by Eq. (14). 

 

   )(sin)(cos)(2
2

12

0











 
  dPC

l
B ll

                        (14)   

 

Our work done so far is that we generated 8 times oversampling [29], 141x141x500 DPs 

from STNV model (pdb-file:entry#:2buk) for the interpolation to work accurately. We 

produced scattering amplitudes and square them to get the intensities on each Cartesian 

grid points. This would simulate the nicely behaved experimental data for the future use 

from the detector that is based on the Cartesian grids. Next, the interpolation from 

Cartesian to polar grid points is performed to use the angular correlation property.  
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Fig 5. Plot of the intensities on Cartesian coordinates and Polar coordinate 

after interpolation of STNV simulated diffraction patterns from pdb-file 

(pdb entry#: 2BUK) 

 

Once the intensities on the polar grid points come out, the angular correlation J(q,ϕ,q’,ϕ’) 

are found by Eq. (5). Fig 6 is a plot for J(q,ϕ,q’,ϕ’) vs. ∆ϕ’s. Then, using the Legendre 

polynomial matrix Pl(cos∆ϕ), Eq. (10), one can also find Bl(q,q’) using Eq. (12) with the 

inversion of Fl(q,q’,∆ϕ)  by Eq. (9). 

 

 

 

 

 

 

Fig 6. Plot of the intensity correlations J(q,q’,∆ϕ) where ∆ϕ = ϕ-ϕ’ for  q = q’ ≈ 

0.06Å
-1

 indicated. These quantities are calculated from the simulated diffraction 

patterns of randomly oriented Satellite Tobacco Necrosis Virus (pdb entry: 

2BUK). Each of these plots a linear combination of Legendre polynomials, 

exactly as predicted by the theory. The structural information resides in the 

magnitudes of the expansion coefficients Bl(q,q’) of the Legendre polynomials.  
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Fig 7. Plot of Bl(q,q) vs q at l = 6. X-axis shows that qmax ≈ 0.3Å
-1

 is divided 

into 140. As we expended, at q ≈ 0.06Å
-1

 (28
th

 or 29
th

 value from the figure), 

which is corresponding q for l = 6 by q = l/R, the peak appearing at this q 

represents that the icosahedral symmetry holds for STNV virus. 

 

Finally, we could get the diffraction volume through these Bl’s, and reconstructed the 

original model (STNV: pdp entry# 2BUK). The algorithm to find diffraction volume will 

be discussed in section 4.1 and 6.2. The diffraction volume consisting of intensities in the 

reciprocal space is used to find the phases using the phasing algorithm proposed by 

Oszlanyi and Süto [30][31].  Fig 8 shows the brief illustration of an iterative method for 

finding phases.  

 

 

 

 

Fig 8. The iterative phasing algorithm of charge flipping method proposed by 

Oszlanyi and Süto [30][31]. 

 



www.manaraa.com

 

15 
 

Fig 9 and Fig 10 shows the reconstructed STNV model through the algorithm mentioned 

above [10]. 

 

 

 

 

 

 

Fig 9. Reconstructed image from the diffraction volume of a single STNV 

particle computed directly from a structure factor calculation. STNV is about 20 

nm in diameter. The figure depicts a view of the icosahedron approximately its 

5-fold rotation axis. The reconstruction assumed a maximum value of q, qmax ≈ 

0.314Å
-1

, implying a resolution ≈ 20Å. Rf = 0.042. 

 

 

 

 

 

 

 

 

Fig 10. Same as Fig 9, except that the diffraction volume was reconstructed 

from the average of angular correlation on 10000 diffraction patterns of STNV 

from uniformly distributed directions over SO(3). A ribbon diagram of the 

STNV structure from pdb entry#= 2BUK is superimposed on the reconstructed 

electron density illustrates the accuracy of the reconstruction [10]. 
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2.3 Summary of Procedures For Reconstructing 3D images of objects 

 

Three dimensional reconstructed structural imaging process starts from collecting 

diffraction patterns of an object. Either simulated DPs or experimental DPs have 2D 

matrices form. Simulated data can be collected after the calculations according to Eq. (13) 

while experimental data are collected by running XFEL equipment. Once these Cartesian 

DPs are collected, interpolation from the intensities on the Cartesian grid points to polar 

grid points should be done to get C2, Bl. To find signs of Bl elements, we will discuss the 

method in section 4.1. Using Bl elements, diffraction volume consisting of intensities in the 

reciprocal space could be obtained. However, intensities in the reciprocal space have no 

phases that can give us the information of charge densities of the object. Thus, we use the 

phasing algorithm to find the charge densities in the real space. The Fig 11 shows the brief 

diagram of the 3D imaging process starting from Cartesian DPs for an object. 

       

 

 

 

 

 

 

Fig 11. The 3D reconstructed structural imaging process after collecting DPs of 

an object. The data are either simulated DPs or experimental DPs. 
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Chapter 3 

Apply Poisson Noise to Simulated DPs and Its effects 

3.1  Poisson Noise 

First, we can consider Poisson distribution function [32], 

   
!

),(
n

e
nP

n 




                   (15) 

where n is the random variable and λ is the expectation value of n. In Poisson distribution, 

λ=E(n) is the relation between the mean value and random variables. Using this formula, 

we adopt Knuth Algorithm [33] for generating a Poisson random number.  

 

 

 

Box 1.  The algorithm for generating Poisson random number by Knuth  

 

      Initialize  n=0,   p=1 

  Do : 

   n = n + 1 

   p = p * rnd [0, 1] 

   while p > e-λ 

   Return n - 1  

 

Box 1. This algorithm indicates that increasing n value up to p > e
-λ

 implies p is 

greater probability of appearance than nonappearance, since if n=0 is plugged 

into the formula Eq (15), then the probability will be P(0, λ) = e
-λ

. In the matlab 

code, poissrnd(λ) is a very convenient tool for generating random variables. That 

is p > P(0, λ) = e
-λ

. 
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3.2 Apply Poisson Noise on Simulated DPs and their effects  

Simulated diffraction patterns are ideal to follow the scattering rules through X-ray shots. 

However, in reality, the real experimental data always contain noise that is discretely 

added on the detectors in each shot. The reasonable guess is to assume that these discrete 

items would be intensities modified by Poisson noise, since its random variables are 

integers (shot noise). Here in this section we examine the effect of Poisson noise [34] 

added on the simulated diffraction patterns, and of lowering the outermost polar ring 

intensities to see how the added noise affects the original shape of the sample as the noise 

are applied. The overview of the process for the Effect of the Poisson Noise on the 3D 

structural image is briefly illustrated in Box 2. 

 

 

Box 2. Above diagram shows the algorithm to add Poisson noise on the 

simulated diffraction patterns of randomly oriented STNV virus and reduce the 

outermost circular intensities. This procedure shows the reconstruction of the 

sample model to examine the effect of discretely added noise on the diffraction 

patterns. 
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We chose some sample models, such as a twelve atom cluster, STNV (Satellite Tobacco 

Necrosis Virus) and PBCV-1(Paramecium Bursaria Chlorella Virus 1) to test the effect of 

Poisson noise added on the randomly oriented simulated data that consist of intensities on 

Cartesian grid points. Fig12, Fig13, and Fig14 show the original 12 atom cluster, STNV 

and PBCV-1 how their original icosahedral images are affected after adding Poisson noise 

of 0.05 ph/SP is applied to their simulated diffraction patterns. 

 

 

 

 

 

Fig 12. By taking 20000 DPs and adding Poisson noise on the simulated 12 

atom cluster diffraction patterns  with resolution ~ 3Å, we compare the noise-

free and noised cases. These two reconstructed images do not make noticeable 

difference between noise-free (left) and noised with the noise level of 0.05 

ph/SP (right). Rf = 0.6083. These two images show both icosahedral shapes.  

 

 

 

 

 

 

 

Fig 13. After taking simulated 1000 DPs (randomly oriented) of STNV (pdb 

entry#: 2BUK), access the procedures to make the images. The left image is for 

noise-free DPs and the right image is for noised (0.05 ph/SP) DPs with 

resolution ≈ 20Å. Rf  = 0.0579. 
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Fig 14. After taking simulated 1000 DPs (randomly oriented) of Chlorella (pdb 

entry#: PBCV-1), access the procedures to make the images. The left image is 

for noise-free DPs and the right image is for noised (0.05 ph/SP) DPs with 

resolution ≈ 200Å. Rf = 0.1923. 

 

 

Now, we want to reduce the intensities with noises down to 0.05 photons/Shannon pixels 

to see how the original images of 12 atom cluster, STNV and Chlorella will change. We 

add Poisson noise on the Cartesian grid points of DPs and interpolate them. Then, find 

C2(q,q’,∆ϕ), C3(q,q’,∆ϕ) and Bl(q,q’), Tl(q,q’) [35]. by 

      dqIqIqqC ),(),();',(2                   (16) 

      dqIqIqqC ),()],([);',(3 2
    (17) 

    



0

);',(2sin)()5.0()',( dqqCxPlqqBl l    (18) 

    



0

);',(3sin)()5.0()',( dqqCxPlqqTl l    (19) 

where x=cosθcosθ’+sinθsinθ’cos∆ϕ. 
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Also, the average number of photon counts per Shannon Pixel is introduced [36] as 

 

   patomep fNrPFN  ||2
                (20) 

 

where F is the photon fluence, Natom is the number of non-hydrogen atoms in the molecule, 

P is the polarization factor, and f  is the average atomic scattering factor (e.g. between C 

and O, f ~ 7) with  for a particle of width w, solid angle 
22222 )2/()()2/(~ wqsp    

where wqs /  is the Shannon interval in the reciprocal space. 

Thus,  

   

2

22

2
|| 













fNrPFN atomep

               (21) 

Eq. (21) is used frequently used while the intensities become lower and examine how the 

image of icosahedral samples would differ according to this intensity level. 

 

    

3.3  Lower limit of the intensity strength with Poisson noise 

Fig 15 and Fig 16 illustrate Poisson-noised DPs, how lowered intensities on the grid points 

of diffraction patterns would change the 3D images of samples, and what would be the low 

limit of the strength of those intensities to keep the original image shape. 
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Fig 15. One diffraction pattern of 12 atom cluster with the intensity of 0.02 

ph/SP is shown. 20000dps of this intensity level with Poisson-noise added will 

make the icosahedral 3D image. Rf = 0.6838. 

 

 

 

 

 

 

 

 

Fig 16. One diffraction pattern of 12 atom cluster with 0.005 ph/SP. 20000dps 

with Poisson noise will make the original icosahedral 3D image deformed. Rf = 

0.7174 

 

Seen from Fig 15 and Fig 16, one can conclude that if the intensities get lowered down 

below the certain level, it is impossible to reconstruct the original structure through angular 

correlation method. Fig 17 illustrate that we generated simulated 1000 diffraction patterns 
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of STNV and performed all procedures to get the final image . If we lowered the intensities 

of 1000 DPs down to 0.01 ph/SP and add Poisson noise on the Cartesian grid points of this 

STNV model, the original shape does not remain the same. Probably, more many DPs 

should be used to maintain the original icosahedral shape. 

 

 

 

 

 

 

 

Fig 17. The left side image shows the icosahedral shape after performing 1000 

noise free DPs of STNV(pdb entry#:2BUK). The right side image shows the 

image after performing 1000 DPs of Cartesian intensities lowered down to 0.01 

ph/SP with Poisson noise added. Rf = 0.0487 

 

 

When the intensities on the Cartesian grid points are lowered down to 0.005 

photon/Shannon interval, we could not get the original icosahedral image. The same 

phenomenon happened in PBCV-1 case. Thus, even though the intensities on thousands of 

diffraction patterns of simulated data that are weakened do not seem to be a bad artifact in 

icosahedral 3D imaging procedures. 
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Fig 18. C2(q,q,Δϕ) vs. ∆ϕ plots from 20000 DPs for 12 atom cluster are 

illustrated. When the Diffraction Patterns of  0.005 ph/SP are accessed, the 

expected 3D image does not appear as in Fig 16. 

 

In our many trials, it is observed that taking many more simulated DPs than 10000 DPs of 

icosahedral sample under incident X-ray shots of intensity level (0.05 ph/SP ~ 0.01 ph/SP) 

gives us more chances to achieve the original icosahedral reconstructed 3D images. Even 

though in processing simulated 20000 DPs of 12 atom cluster with 0.02 ph/SP intensity 

level gave us the original icosahedral image, with the X-ray shot intensity level of 

0.01ph/SP in 20000 DPs are unstable to give the original icosahedral image. In STNV or 

PBCV-1 case, 1000 DPs with the Poisson noise of 0.05ph/SP mostly give the reconstructed 

icosahedral 3D images. For accessing the DPs of X-ray shots of low intensity level with 

0.05 ph/SP ~ 0.005 ph/SP, many more than 100000 DPs should be taken to make the 

reconstructed 3D image stably possible. 
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Chapter 4 

Formulation of Parameters for Curved Ewald Sphere  

Saldin et. al. showed in 2011 that it is possible to recover images of icosahedral viruses 

from the average angular correlations amongst diffraction patterns of unknown 

orientations. We repeat the calculations here, taking account of the effects of a curved 

Ewald Sphere, the fact that the detectors form Cartesian grids from which it is necessary to 

interpolate onto circles on each diffraction pattern, and assuming the particle orientations 

are random in SO(3). We find excellent reconstructions in most cases with as few as 300 

diffraction patterns (DPs). From Eq. (18) and (19), x=cosθcosθ’+sinθsinθ’cos∆ϕ is an 

important parameter to get C2, C3, Bl, Tl. If we handle large viruses such as Mimi virus or 

Chlorella virus, we can ignore the curved Ewald Sphere effects, since θ close to π/2 by Eq. 

(3), so x would become cos∆ϕ. However, when the sample particles are small enough to 

make scattering angles big, then those minute effects are not negligible. Thus we are 

supposed to take a curved ES. The following is a brief summary of the method used to 

calculate the angular correlations C2, C3 and their angular Fourier transforms [37] leading 

to the reconstruction of the final 3D image for the object. The diagram followed by the 

formulation will help understanding of how to get the simulated diffraction patterns on a 

curved Ewald Sphere and 2D flat pixelated Cartesian grids. 

 

4.1  Angular Correlation C2, C3  and  Bl , Tl  leading to Diffraction Volume 
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From the above expression Eq. (16) and Eq. (17) will provide the average of paired the 

intensity product over all polar grid points with an angular separation. Among the discrete 

intensities, Eq. (16) and Eq. (17) can be described as [38] 

   

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And Eq. (18) and Eq. (19) become 
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where x=cosθcosθ’+sinθsinθ’cos∆ϕ with Eq. (3). 

By a different derivation as we show 

   
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lmlml qIqIqqB )'()()',(         (26) 

   

mmm
ll

mllmmll qIqIqImlmlmlGqqT

,,
,

*

2211

21

21

2211
)()'()(),,,,,()',(   (27) 

Here, G’s are the Gaunt’s coefficients and Ilm(q) are the spherical harmonics expansion 

coefficients of the 3D diffraction volume [39] of a single particle in the reciprocal space. 

For an icosahedral object, Ilm(q) can be written as 

   )()( qgaqI llmlm         (28) 
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The z-axis is chosen as the 5-fold symmetry axis. gl(q)’s denote the expansion of an 

icosahedral harmonics needed to specify the 3D diffraction volume of an icosahedral 

particle as described well in [35]. gl(q) is a real. Ilm(q) is known up to a sign, since 

,1
2
 lma with )()(),( qgqgqqB lll  , ),()( qqBqg ll  . To determine the signs with 

an equivalent expression of Eq. (27), 

   
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21

,

21 )()()(),,(),(
ll

llll qgqgqglllbqqT                (29) 

where 

   
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221121 ),,(),,(
mmm

mllmml aaamllmmlGlllb    (30)  

To find the diffraction volume, Bl(q,q) and Tl(q,q) are used  with l values. In this test, 

STNV (pdb-entry#: 2buk) is used. Because of its icosahedral symmetry, only the following 

l values are allowed for lmax=28. l = 0, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28. These l values 

give only 211 sign combinations. The best-fit combination can be searched exhaustively by 

comparing theoretical and experimental B’s and T’s. 

 

4.2  Interpolations from the intensities on enlarged polar grids down to a Curved Ewald 

 Sphere 

When X-ray Free Electron Laser (XFEL) gives shots to a small particle such as STNV 

whose diameter is about 20 nm, the shots tend to diffract more widely than large particles 

like Mimi virus whose size is about 450 nm. This will lead us to consider the curvature of 
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the Ewald sphere in the reciprocal space and change the calculation done in the flat Ewald 

sphere. After generating simulated data on enlarged polar grid points in the reciprocal 

space, interpolation is to be performed so as to get the intensities on Cartesian grids to 

mimic the experimental data which is based on the Cartesian grids. Fig 19 shows the 

formation of parameters of a curved Ewald Sphere and how interpolations will be done 

through the different parameters from the calculation on the flat Ewald Sphere.  

 

 

Fig 19. The figure illustrates that the parameters used in dealing with flat Ewald 

Sphere should be changed when X-ray shots on a small particle such as STNV 

give large scattering angles. The figure also shows how the interpolations will 

be done to make the angular correlations work for the 3D imaging process using 

icosahedral particles exposed on 10Å wave length of X-ray. 
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We carefully examined the effect of these curved Ewald Sphere [40] parameters with the 

curvature and grabbing the idea of reconstruction of the particle through these parameters 

rather than those of flat Ewald Sphere. We recognized that the curvature of the Ewald 

Sphere will help us understand the whole range of spectra for all imaging procedures we 

developed through simulated diffraction patterns. Using Eq. (13), one could generate many 

simulated diffraction patterns to do numerical tests for the flat Ewald Sphere. Different 

from a flat Ewald Sphere, we have carefully examined the effect of a curved Ewald Sphere 

on the 3D imaging process and noticed that Eq. (13) still functioning well while we apply 

the new variables through the curved Ewald Sphere set up into all the imaging calculations.  

Eq. (13) gives simply coherent X-ray diffraction amplitudes and leads to Eq. (32), and the 

wave number defined by 

    /2K         (31) 

Using kkq  '  with Eq. (13) to get amplitudes on a curved Ewald Sphere, new sets of 

parameters come arise as 

   jzzjyyjxxj rqrqrqrqi        (32) 

with 
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Thus, qx, qy, qz become 
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Taking the above formulation, we examined the reconstruction procedures and apply X-ray 

pulse of wavelength, λ=10Å and qmax ≈ 0.3Å-1 in the simulated diffraction patterns from 

STNV pdb file to explore all the calculations for 3D imaging process. Fig 20 describes the 

different categories of diffraction patterns and how these patterns are to be interpolated 

considering the curvature of the Ewald Sphere. The number of photons per Shannon Pixel 

can be counted as one or two that are supposed to hit the outermost circular (polar) grids of 

ES. Considering the wave length of 10Å, a curved Ewald Sphere is adopted. 

 

 

Fig 20. Different category of diffraction patterns in the reciprocal space is 

shown. From the right, the enlarged simulated diffraction patterns on polar grids 

are generated and interpolated to intensities on the square grid points which 

mimic the real experimental DPs based on rectangular detector grids. 
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4.3  C2, C3 and Bl, Tl with Sample Model and reconstructed image  

 

In this section, we generated 500 simulated diffraction patterns of STNV (pdb entry:2buk) 

[41] using the curved Ewald Sphere formulation introduced in the previous section and 

examined all the calculations from Eq. (31) to Eq. (37) to see if these worked. First, 

intensities through Eq. (13) and Eq. (31) on the enlarged polar grid points are calculated. 

The enlarged grids points are not radially uniform. The interpolation from unevenly spaced 

polar grids to evenly spaced Cartesian grids provides the simulated diffraction patterns can 

mimic the real experimental DPs. Once interpolated, Cartesian diffraction patterns contain 

the information of three parameters qx, qy and qz that are important in dealing with a curved 

Ewald Sphere case. Big samples (particles or molecules) produce generally small 

scattering angles ζ such that the complement angles θ get closer to π/2, which leads to qz ≈ 

0. However, if the scattering angles are large enough that we cannot ignore the curvature, 

then the parameter qz’s come into play. Different from the flat Ewald Sphere, obtaining 

I(q,ϕ) on a polar grid with not only qx and qy  but also qz with rj’s provided from pdb file as 

atom coordinates come in handy. Then we could get C2, C3, Bl, Tl by Eq. 22, 23, 24, 25. 

Fig 21 shows how quantity relations look like. 

 

 

Fig 21. Obtaining intensities on polar grids from Cartesian grids after 

performing interpolations, one could get C2, C3 through Eq.(22), Eq.(23). As 

seen in the figure, Bl(q, q) vs. q at q=l /R where l=6, R=100A, the peak appears 

as we expected.  
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Same as in Fig4, Fig18 describe that at q values corresponding to l=0, 6, 10, 12, 16, 18, 20, 

22, 24, 26, 28 through q = l/R give peaks in angular momentum decomposition analysis 

[9]. It is of interest to know whether one can reconstruct a nearby icosahedral structure by 

ignoring non-icosahedral l’s. If the diffraction volume has the icosahedral symmetry, one 

would expect the low angular momentum quantum numbers to be primarily l = 0 and l = 6 

as in Fig 4. In our test, we could recognize all other icosahedral symmetry components are 

relatively small Bl(q,q) values. In the curved Ewald Sphere case, we examined 40 sets of 

100 DPs, 200 DPs, 300 DPs, 500 DPs to investigate how these different number of 

diffraction patterns make 3D icosahedral image after all the calculation process. We found 

that even 100 simulated DPs will make a good icosahedral 3D image of more than 85% of 

chances (See Fig 22). Fig 22 shows the ribbon model of STNV (satellite tobacco necrosis 

virus) provided by pdb (entry#: 2BUK). 

 

 

 

 

 

 

 

  

 

 

 

Fig 22. The 3D image of Satellite Tobacco Necrosis Virus (STNV) through all 

the calculations using pdb-file consisting positions of atoms and the distance of 

each atom from the center. 
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Our main goal in this section is to reconstruct the 3D icosahedral image along the different 

number of diffraction patterns and to examine how the small number of diffraction patterns 

affects imaging processing. We tested first with forty sets of different 500 randomly 

oriented diffraction patterns, processing all calculation procedures for each set and never 

failed to get the icosahedral 3D images as in Fig 23. Judging the probability to get the right 

images according to different number of DP sets is pretty much time consuming labor. The 

probability of getting the right images of STNV could be obtained by empirical tests. 

These successful probabilities may vary if we take the different DP sets. The Fig 25 shows 

the approximate chances to get icosahedral images in the trials with different number of 

DP sets. 

 

 

 

 

 

 

 

 

Fig 23. The image of STNV through the all calculations with curved Ewald 

Sphere parameters. Forty trials with 500 randomly oriented simulated DPs never 

failed to get the right image. By eliminating a part of the surface from the 

reconstructed image using the Chimera “Volume Eraser” command the 

internally hollowed structure appears as expected. Perhaps any internal structure 

is less than the capsid. Rf = 0.0432. 
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The diffraction patterns for a randomly oriented particle on a curved Ewald Sphere in the 

reciprocal space tend to generate a little clearer image as in Fig 23. The behavior of 

intensities on a curved Ewald Sphere fluctuate the same as for the case of those on a flat 

ES. Fig 24 shows the typical behavior of intensities along difference q values. 

 

 

Fig 24. Plot of Intensity vs. q values for whole range of enlarged polar grids 

where we take only a part while the interpolation is being done according to 

qmax=lmax/R. qmax≈0.3Å, Radius(R)=100Å, lmax=28, res ≈ 20Å. 

 

We made many trials to do all calculation procedures of making images using different 

number of simulated diffraction patterns that were randomly oriented STNV using curved 

Ewald Sphere parameters. When we tried with forty 300 DP sets, only once we failed 

getting a good image out of forty trials. This probability may slightly vary according to DP 

sets, since it is probabilistic approach. Comparing to flat Ewald Sphere cases, the result 

illustrated in Fig 25 does not change much. These empirical examinations cautiously lead 

us to assume that more than 500 simulated DPs generated by randomly oriented particle 
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seem to be irrelevant in our work. In general, the more DPs of randomly oriented sample 

can give the better chances of the successful performance to make good reconstructed 

images. However, due to the icosahedral symmetry, more than randomly oriented 

simulating 500 DPs seem to be redundant except for some statistically biased cases. 

 

 

Fig 25. Empirical list for the chances to produce icosahedral images of STNV 

when all the procedures of calculations with 40 sets for each categorized DP are 

performed. In this work, curved Ewald Sphere parameters are used. (This 

statistical data may vary in other trials with different number of DP sets). Rf = 

0.0432. 

 

As Eq. (36) indicates, curved Ewald Sphere parameters will be applied to a small sample 

that gives rise to a large qmax on the detector in the reciprocal space, and a low incident X-

ray photon energy that provides long wavelength λ. Then the qz values in Eq. (36) are not 

negligible. Empirically, θ = sin-1(qz/q) ≈ 8˚ seems to be the threshold angle to decide for 

applying curved Ewald Sphere algorithm in all 3D imaging  procedures. 
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Chapter 5 

Shot to Shot Variations of Incident X-ray and Lost Central Intensities 

In the experimental equipment set up for XFEL, the strength of an incident X-ray pulse at 

the center is assumed higher than the edge and a certain variations [42] of the strength in 

all incident X-ray shots occur. The consequences of these variations can cause some 

calculation difficulties in image processing. As for the inconsistent shot variations, some 

adjustments are needed to enable calculation procedures to reach their final goals of 3D 

imaging process. In this chapter through the simulated 4000 DPs of a randomly oriented 

and located sample of STNV with the addition of Gaussian variations (4%) to the incident 

X-ray pulses, a remedy for this problematic issue could be understood. Understanding the 

deficiency of collecting DPs under the shot to shot variation from Gaussian Incident X-ray 

pulse can be achievable by using DPs from different region where the sample are placed. A 

Gaussian pulse does not give same influence in all regions of the locations of sample. We 

collect DPs from differently separated by σ(standard deviation of the pulse variation). 

While taking all DPs from the whole region of sample location, the 3D imaging process 

failed, if only the DPs generated by the sample located within one unit of σ of the Incident 

Gaussian pulse, the reconstruct 3D image of the sample (STNV) appeared, not as good as a 

perfect icosahedral shape though. STNV is used as a sample in this simulating procedure 

of 4000 DPs with the sample size ≈ 200Å, randomly rotated and located in 0 ≤ RC(polar 

coordinate for the Center of sample) ≤  600Å , qmax ≈ 0.3Å-1, res ≈ 20Å, lmax = 28, 

incident Gaussian beam diameter = 1000Å, σ = 166Å, energy of the incident beam ≈ 1.4 

KeV, photons of incident X-ray pulse  ≈ 106 photons/Å2. With these specifications of the 

simulating process, C2(q,q’,∆ϕ), C3(q,q’,∆ϕ) which will lead to obtain Bl(q,q’)  and  
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Tl(q,q’) via Eq. (24) and (25) are achievable and effective for pursuing 3D reconstructed 

image of STVN. When we access the real data, experimental DPs always contain the lost 

central intensities. These lost central intensities in DPs give quite a big problem to work on 

angular correlation method. In section 2 of this chapter will discuss some remedies for the 

problem. 

 

 

5.1 Shot to Shot Variation of Gaussian Incident X-ray pulse on a particle and its remedy 

The strength of incident X-ray pulse may vary. In this section, we simulated shot to shot 

variations that occur when the incident X-ray hits a particle. Considering a circular X-ray 

pulse shot hits a particle, the particle may be positioned at the center or the edge or 

somewhere in the middle. Then the influence of the X-ray shot may differ by the location 

of the particle. The scattered X-ray photons that pass through the particle from the center 

are counted more than from the edge. This variation gives the number of photons on the 

detector inconsistently. We provide the remedy to adjust this artifact so that the 

calculations for reconstructing 3D image of the particle under the shot variation will be 

available. Fig 26 illustrates the skimming view for the X-ray pulse shot on a particle. When 

the incident X-ray shot hits the sample as in Fig 26, the influence of the strength of the X-

ray affects differently according to the position of the sample. 
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 Fig 26. Incident X-ray has a strongest intensity at the center and attenuated as it 

is away from the center. The intensity follows the Gaussian along the radius of 

the X-ray pulse front. First sample is under the strong influence of the shot, 

second sample is weakly influenced and the third sample has almost no 

influence of the shot. 

 

Each atom has its own radial position and interact the Gaussian X-ray [43], thus the 

generated amplitude by each atom follows the Eq. (37). 













 


2

2

2

)(
exp)exp()()(



CRr
AmpriqqfqA                               (37) 

For convenience, we can take Amplitude of the incident X-ray varies from 1 to 0.98 (2%) 

and the standard deviation of the ray has σ = 1/3R where R is the radius of the X-ray pulse 

front considering the 4% of intensity variation of the incident X-ray pulse. All amplitudes 

coming from each atom are added together to form an intensity on a detector grid in the 

reciprocal space by squaring the amplitude sum according to the Eq. (13). Here, atomic 

scattering factor f (q) is defined as 
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where ai ,  bi ,  c are Cromer-Mann’s coefficients [44] that are specified by each atom in 

the sample. When generating simulation DPs, the center of the sample STNV, will take up 

a random position in a circular space of radius 0 ~ 600Ao while the X-ray shot influence is 

committed up to 500Å.   

 

Fig 27. 4000 Cartesian DPs from randomly oriented and located within 0~600Å 

away from the beam center in each X-ray shot of intensity variations are 

generated. A STNV sample is supposed to be positioned at one of the region as 

in Fig 23. The plot shows how many DPs should be discarded to get the right 

information of the sample in 3D imaging.  

 

Using Eq. (13), (37) and (38), one can generate Cartesian DPs of a randomly oriented 

sample and interpolate intensities on the Cartesian grid points into polar grid points. Since 

the intensity of incident X-ray shot varies on each DP as in Fig 27, the shot influence plays 

a role to generate DPs according to the sample position. Fig 27 shows in our test that at 

most 7% (280 DPs/4000 DPs) from the location of the sample (0 ≤ RC ≤ 166=1σ) enable 
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the calculation of C2(q,q’,∆ϕ)  and  C3(q,q’,∆ϕ) which will lead to obtain BL(q,q’)  and  

TL(q,q’) using square matrix inversion as in Eq. (12).  

 

 

 

Fig 28. Images of Cartesian DPs by varying Intensity X-ray shot on a sample 

(STNV) in different region. These 2D images show the diffraction patterns as 

the center of STNV located gradually away from the X-ray beam center. Most of 

DPs are not usable except high 7% of all DPs when they are sorted by average 

intensities. 

 

For the images of STNV DPs from the shots in Region1 generate patterns of strong central 

brightness and hexagonal fringes. Even though it is possible to select DPs by probability 

under the shots onto the region of ≤ 3σ, visional differentiation has many limits that can 

cause quite a sizable calculation errors in each step. This is the reason why the sorted 

average intensity level at a certain low q should be checked to distinguish the DPs under 

the shots of X-ray onto the region (≤ σ) from ones under the shots onto the sample located 

away from the center by farther than one unit of σ. Among about 4000 DPs, 280 DPs of 

them are selected considering safe functioning of angular correlation method. These 

selected Cartesian DPs are interpolated to polar DPs. Under the influence of no incident X-

ray shot variations, the intensities on polar grid are the same at low q. However if there are 
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Gaussian X-ray intensity variations are applied, even at a low q position on polar grids, the 

intensity levels are not consistent along the different angular positions shown in Table1. 

Table2 shows that at low q1 ~ q7, the intensities along the different angular positions 

appeared the same irrespective of the orientation of the sample. At least in 2D diffraction 

patterns, it is clear [45] that there exist quantities independent of the orientation of the 

particle. Thus under the incident X-ray shot variations, the average intensities in polar DPs 

can be equalized to access the angular correlation method just like the uniform strength of 

incident X-ray shots. By the reasons mentioned above, DPs generated by the sample in the 

region (≥ σ) in Fig 27 where only very weak influence of shots performed by varying 

Gaussian pulse will be discarded. 

Table 1. Polar diffraction patterns containing intensities generated on polar grid 

points under varying intensities of incident X-ray shots are illustrated. From the 

above table, DP1 from uniform incident X-ray shot shows no intensity varying 

at q7. DP2 shows varying intensities even at q7 as the angular position changes. 

 

Fig 27 shows us a hint how to adjust different average intensity levels proportionally at q7 

for each DP. By equalizing the average intensity levels at a designated q could be a future 

help to overcome the problem of DPs containing lost central intensities. Once all polar DPs 

are synchronized by proportional adjustment, it is ready to obtain C2(q,q’,∆ϕ)  and  

C3(q,q’,∆ϕ) using Eq. (22) and (23) proposed by Z. Kam [38] as a cross correlation 

function, which is equivalent to Eq. (5). Bl(q,q’) and Tl(q,q’) are independent of angular 

positions and can obtained from the Eq. (24) and (25) which will lead to get the diffraction 
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volume in reciprocal space. The obtained diffraction volume, whose elements are 

intensities in reciprocal space, will be employed to get the charge densities in real space by 

iterative phasing algorithm [30][31]. As illustrated in Eq. (26) ~ (30), )(qI lm
are known up 

to signs. Because of icosahedral symmetry, only the following l values are allowed for lmax 

= 28 with l = 0, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28. Since L has eleven values for 

icosahedral symmetry, there are only 211 sign combinations exhaustively performed to get 

the best-fit combinations by comparing theoretical and experimental T(q,q’)’s. To 

understand how this method works, simulated experimental data for B and T were obtained 

directly from PDB file of STNV (entry#: 2BUK). The combination of sings which gives 

the best-fit between the theoretical and experimental diagonal elements of T’s for a given 

reference shell was found. Then the signs can propagate to other shells by the non-diagonal 

B(q,q’). Hence with Ilm(q), the diffraction volume can be calculated. The iterative charge 

flipping method is used for phasing the diffraction volume and gives the charge densities 

for STNV and the icosahedral image of STNV is shown up as in Fig 17. 

 

 

Table 2. Intensities on polar grid points interpolated from a Cartesian DP shows 

that from q0 up to q7 ≈ 0.016Å
-1

 ≈ 0.05qmax  
 
where qmax = q140 ≈ 0.314Å

-1
 the 

intensity variations do not appear along the different angular positions where 

uniform strength of incident X-ray shots are performed onto the sample STNV. 
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Fig 29. These reconstructed images from Gaussian Intensity varying X-ray shots 

referring to Fig 24. From the left, the first image is from all 4000 DPs (0 ≤ 

location of sample ≤ 600Å). The second image is from 2720 DPs (68%, 

locations of sample ≤3σ), the third image is from 1200 DPs (30%, locations of 

sample ≤2σ), the fourth image is from 280 DPs (7%, locations of sample ≤σ). 

The last image is from 200 simulated DPs with no varying incident X-ray. From 

the left, Rf = 0.0576,  0.0598,  0.0532,  0.0414,  0.0419. 

 

 

5.2 How to overcome the lost central intensities in DPs and the remedies for simulated 

data under shot to shot incident X-ray intensity variations. 

 

In reality, the experimental DPs containing lost central intensities are observed in detector 

grid points. Fig 30 shows how the real DP data look like and supposed to be overcome in 

each calculation procedures. The left figure in Fig 30 is the one that the central intensities 

are eliminated artificially from the generated DPs using PDB file of PBCV1 (pdb 

entry#:1M4X) [46] and the right one is from an experimental PBCV1 DP. As one can see 

central part of DPs are eliminated to let the scattered X-ray pass through to protect 

detectors from the strong influence of the rays. This can cause some difficulties in 

performing interpolations, getting C2, C3 and Bl, Tl and hereafter up to find reconstructing 

3D images. To overcome these lost information and shot to shot variation, simulated data 

with eliminated central intensities and shot to shot variations are applied to develop the 

algorithm to help the calculation procedures go on. The black line in the figure indicates 

the connecting part of detectors where the scattering rays are not recorded. By the 
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advantage of C2(q,q’,∆ϕ) and C3(q,q’,∆ϕ) through point by point calculation, this 

problematic issue can be resolved easily.  

 

 

 

 

 

Fig 30. Two figures show the lost part of the intensities in DPs of PBCV-1. The 

left is a simulated DP with artificially removed intensities to resemble the one 

on the right to overcome the issue of the lost intensities. Also the shot to shot 

incident X-ray variations are applied here. 

 

 

However, the shot to shot variations of incident X-ray strength should be considered to 

pass through all calculation procedures to achieve the goal of 3D imaging. At this point, so 

called Intensity fitting using Atomic form factor [47][48], which is scattering amplitude, 

sometimes we refer to Rayleigh fitting, should be adopted to extrapolate the lost central 

intensities into the beam stop of all DPs. The reason why the extrapolations are needed into 

the beam stops is that as Fig 31, even though there are lost radial central intensities at low 

q, from q0 up to q6 in experimental DPs, one could easily observe that imaging process is 

still successful. For example, where qmax = q140, Fig 31 indicates that if we lost intensities 

at q0 ~q9, then the polar intensities at q9, q8 and q7 should be resumed by some appropriate 

method.  
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Fig 31. Through STNV 3D imaging process with 500 DPs, where qmax = q140 ≈ 

0.3Å
-1

, if the radial intensities at q0 ~ q8, q9 and the more are lost, then the 3D 

imaging process fail for icosahedral viruses. Thus, the extrapolation down into 

q7, which is within 5% of qmax, is needed for the 3D imaging process to be 

successful. From the top left, Rf = 0.0440,  0.0778,  0.0458,  0.0789,  0.0453,  

0.0786,  0.0463,  0.0797,  0.0775,  0.0984. 

 

 

Now, a fitting method, sometimes we refer to analytical fitting, using the scattering 

amplitude is introduced as the following to resume the lost central intensities by the 

extrapolation into the beam stops. Amplitude in the reciprocal space can be written as  

  rdriqrqA 3)exp()()(                                                                 (39) 

Considering 99.9% of atoms in STNV are C, N and O, for convenience we can take ρ(r) ≈ 

average charge density ρo, then the Eq. (39) under the spherical coordinates will be  

      dddrrriqqA sin)exp()( 2

0                           (40)  

with  ddxandx sincos  , (40) will lead to 
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Therefore, the resuming amplitudes in DPs for the lost central intensities into beam stops 

would follow the scattering amplitude is written as  
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Fig 32 shows how the lost central intensities are extrapolated by the scattering intensity 

fitting down to the expected low q-value. The blue and red line in the plot shows that the 

intensity fitting resumes the central lost intensities with quite a good precision (3~4%) 

comparing to the whole range of intensities, which leads to a successful 3D imaging 

process as in Fig 31. 

Fig 32. Three intensity plots along the angular position at 47
o
 from a polar 

diffraction pattern vs. whole range of q values is illustrated. Blue line shows the 

intensities at all q values.  Red line shows the extrapolations down to q ≈ 

0.016Å
-1

. The *’s indicate the lost central intensities from the center (q = 0) to q 

= 0.027Å
-1

. 

Intensity fitting as in Eq. (43) is used to extrapolate the lost central intensities around the 

center of polar DPs so that the calculations for C2, C3, Bl, Tl are possible to make 3D 

imaging process successful. Fig 31 and Fig 32 give a hint how to handle and what portion 

of lost intensities from the whole range in experimental DPs are allowed to get 3D imaging 

calculation procedures working well. Table 3 shows the comparison of intensities on a 

polar DP grid points with three categories in Fig 32. 
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Table 3. First column shows lost intensities up to q12 ≈ 0.016Å
-1

. Second 

column shows six intensities at q12 ~ q7 are extrapolated by the Intensity fitting. 

Third column shows no lost intensities. The images from the top to bottom on 

the right side correspond to 500 DPs of first column, second column and third 

column respectively. From the top, Rf = 0.0958,  0.0510,  0.0440. 

 

In this case, three category of C2(q,q’,∆ϕ), C3(q,q’,∆ϕ), Bl(q,q’), Tl(q,q’) will coincide 

with each other over the q ≈ 0.016Å-1. Nevertheless, if DPs lost more than certain portion 

of central intensities, then those DPs will not produce nicely shaped 3D images as in Fig 

31 and Table 3.    
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Chapter 6 

Multi Particle Scattering Test By Positioning two nanorice particles in a Cylindrical Space 

When the injector in an experiment in reality ejects aerosol [49] containing nano sized 

objects, these sample objects are supposed to get a shot of the incident X-ray pulse with the 

duration of a few femtoseconds. Then the illuminated region in the aerosol will form a 

cylindrical shape in which nano particles such as viruses, proteins, or other objects are 

placed with random orientations. In spite of all background checks much like the 

influences of solvent, multi particle interference, intensity variations of incident X-ray 

pulses, noise, chemical affinity between particles, dipole moments of each particle, etc. 

Here we examine how multiple particles affect performing the calculation procedures to 

achieve the reconstruction of 3D images of samples, and how different multi particle 

scatterings from single particle ones. First, we placed two ellipsoidal shapes of nanorice 

particles whose short radii are about 8Å and long radii are about 25Å in the cylindrical 

space of which the radius is about 1000Å and length of 3000Å [50] that resembles the 

illuminated region in the aerosol by incident X-ray pulses (See Fig 33). And then 

generating 8000 simulated DPs for two randomly oriented nanorice particles are processed 

using Eq. (13). Fig 33 shows the simple diagram of equipment set up in performing an X-

ray pulse shot on to two nanorice partices in the solvent. We are going to start developing a 

simple theory of how to form intensities on the detector grid points through Eq. (13) and 

Eq. (32) on a flat ES with qz = 0. Fig 34 shows one nanorice particle as a sample model 

having azimuthal symmetry. We randomly rotated and placed these two particles in the 

illuminated area, and examined if the algorithm that we developed works properly for 

obtaining the 3D reconstructed structural image. 
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Fig 33. When an incident X-ray shot pulse moves from the right to the left, 

shortly after it will illuminate a cylindrical space in the sheet of downstream 

solvent containing two nanorice particles and scattered into the detector and 

form intensities on the detector grid points. Cartesian Diffraction Patterns are 

generated by the scattered X-rays from the two nanorice particles (No overlaps).  

 

 

 

 

 

 

 

 

 

Fig 34. One nanorice particle as a sample model with the azimuthal symmetry is 

adopted to examine if the algorithm for achieving the 3D reconstructed 

structural image works properly. 
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6.1 Calculate C2 (q,q’,∆ϕ) from adding intensities on polar DPs generated by randomly 

oriented two particles (Incoherent).   

 

For single particle, Eq. (13) enables us to calculate an intensity on a polar grid points when 

the center of the sample moved by R. Assuming the sample “a” contains two atoms (1, 2) 

as in Fig 31, then the amplitude at q becomes 
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Here I(q) is the same as the one whose center is moved. Even though for the sample 

containing many atoms )( 12 rr   will be possible pairs of all atom-positions and 

independent of positions of the centers. Now, let us adopt one more same sample “b” 

containing same two atoms (3, 4).  Fig 35 shows the diagram for different procedures of C2 

calculation between adding intensities and adding amplitudes [51]. 
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Fig 35. Diagram of adding intensities (incoherent) used in calculating 

C2(q,q’∆ϕ) is illustrated. The average of products < I(q)I(q’)>  becomes one of 

C2 elements. 

 

By the same way, using Eq. (44),  
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Thus, 
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From (46) and (47), C2 (q,q’,∆ϕ) can be written as 

   )'()'()()(),',(2 qIqIqIqIqqC baba                (48) 

If we forget average bracket for a moment, then (44) will be  
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6.2 Calculate C2 (q,q’,∆ϕ) from adding amplitudes on polar DPs generated by randomly 

oriented two particles (Coherent).  

Adding amplitudes would be a bit complicated in coherent case. Fig 36 shows the diagram 

that illustrates adding amplitudes at different q. 

 

 

Fig 36. Diagram of adding amplitudes (Coherent) used in calculating 

C2(q,q’∆ϕ) is illustrated. The average of products  < I(q)I(q’)>  becomes one of 

C2 elements. 
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The multiplication of conjugate amplitudes in Eq. (50) becomes  
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By the same way, 
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If we put the subscript “C” for Amplitude Addition (Coherent), “I” for Intensity Addition 

(Incoherent)  and  δI(q) for the difference of intensities between  IC (q) and II (q). 
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It is easily observed that these are all cosine functions so that as we take many DPs, δ IC(q) 

and δIC(q’) will internally cancel each other. That is,   

)'()()()'()'()()'()()'()( qIqIqIqIqIqIqIqIqIqI IIIICC    

gives rise to the same as 

 )'()()()'()'()(),',(),',( qIqIqIqIqIqIqqCqqC IIIC    (55) 

In Eq. (55), the second, third and fourth terms will disappear at q = q’ when enough DPs 

are taken since the positions (rj) give many combinations cosine values (±). However, only 

these terms will not disappear even at q = q’ by canceling each other only if ∆ϕ=0o and 

180o(π) since  2)()'()( qIqIqI    is just only one value squared comparing to at 

∆ϕ≠0o. )'()( qIqI  is the product of two values even at 'qq  . For cosiqrriq  , θ 

changes even though at the same q (radial) and r (atom positions). For example, on a polar 

grid at same q and r, let us assume there are two intensities ).,(and),( 21 rqIrqI  Then, 
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This result gives us )0,,()0,,( 22   qqCqqC . The left hand side of Eq. (56) 

can be ± values while right hand side of Eq. (56) is always positive. The consequence 

indicates that C2 from intensity addition (Incoherent) is almost the same as C2 from 

amplitude addition (Coherent) except at ∆ϕ=0, π and 2π as in Fig 38. Thus, in this case, 

 andcosqrrq  has an important role. 
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Fig 37. Assuming the experimental set up on above,  putting in two nanorices  in 

a cylindrical space illuminated in the aerosol by the incident X-ray pulse  with 

the diameter of 1000A
o
 and the length of 3000A

o
 with 8000 different random 

orientations are adopted in generating DPs. DPs are shown on the bottom. From 

the left, the first and the second are the single particle shot and the third is the 

addition of the two DPs. The fourth DP is coherent scattering from the two 

nanorices whose positions are exactly the same as the first and the second at the 

same time. 

 

Fig 38 proves the consequence from Eq. (56). Two C2(q,q,∆ϕ)’s for Incoherent case 

(intensity addition) and Coherent case (amplitude addition) are the same except ∆ϕ = 0, π 

and 2π. 

Fig 38. Two C2(q,q,∆ϕ)’s coherent and incoherent cases are compared. As one 

can see that only the difference occurs at 0
o
, 180

o
 and 360

o
 at high q.  The reason 

is explained with Eq. (57). 
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At the lower q values, the distinctions come clearer as in Fig 39. 

Fig 39. By lowering q values, the difference between coherent case and 

incoherent case appears clear. As increase the q values, the differences between 

two cases at ∆ϕ=0
o
, 180

o
, 360

o
 become smaller. 

 

As one can easily observe in Fig 40, the average intensities in polar grids of incoherent and 

coherent cases, the difference between them becomes larger as q gets lowered. This is why 

the plot in Fig 39 shows the big difference of C2’s values at low q. 

Fig 40. The average intensity difference on polar grids along the different 

angular positions becomes larger as q gets lowered. This shows that C2(q,q,Δϕ) 

becomes wider as in Fig 39. 
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Now, once we got C2(q,q’,∆ϕ) and C3(q,q’,∆ϕ), we can calculate Bl(q,q’) and Tl(q,q’). For 

azimuthally symmetric particles, one may take m = 0 in Eq. (26) and (27). This 

immediately suggests  

   ),(|)(| 0, qqBqI lml                             (57)      

Also, as Il,m=0(q) is determined by the integral of a real intensity with a real Legendre 

polynomial, it is real and the only remaining task is to determine its sings. We can 

determine these signs from the triple correlations by assuming, as it must be for a nanorice 

particle that azimuthal symmetry of the amplitudes implies azimuthal symmetry of the 

intensities from the usual Clebsch-Gordon rules [52] for adding angular momenta. In this 

case, all magnetic quantum numbers are equal to zeros, and the triple correlation reduces to 

a sum over only the angular momentum quantum number l. Thus, 

   )0;0;0()()()(),( 210

,

00 2

21

1
lllGqIqIqINqqT l

ll

lll     (58)   

where G is a Gaunt’s coefficient [53]. Note that the two point triple correlations are scaled 

for multiple particles by exactly the same factor of N as the quantities of Bl. Since an 

ellipsoid has azimuthal symmetry about a particle axis we can choose the long particle axis 

as z-axis, thus eliminating any other components of the magnetic quantum number except 

m = 0.  |)(| 0 qI l  can be directly obtained by Eq. (57). 

The only unknown here is the signs of Il0(q). Those signs can be determined by fitting all 

possible sings of Il0(q) to the values Tl(q,q) of the triple correlations computed directly 

from DPs of randomly oriented particles using Eq. (25). It should be stressed that the 

number of equations is equal to the number of distinct Tl(q,q) values, namely the numbers 
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of q and l values, as is the number of unknown Il0(q), so there will not be a short 

information conflict. It should be pointed out that, for a single particle object, the structure 

of such a simple particle had been determined even experimentally by a different method 

[54]. After the determination for the signs of Il0(q), one could get intensities in the 

reciprocal space using Eq. (1). Briefly, we explicit simulations of the expected diffraction 

patterns with Poisson noises and calculated from them, the angular correlations 

);',(3and);',(2   qqCqqC  leading to )',(  and  )',( qqTqqB ll  from which the 

diffraction volume is calculated after the sign determination. Through an iterative phasing 

process, the image we found is shown in Fig 41. 

 

 

 

 

 

Fig 41. The charge density of single nanorice particle recovered from 8000 

simulated diffraction patterns for two nanorice particles including shot noise of 

10 ph/SP. Rf = 0.1666. 

 

A nanorice particle is composed of Fe atoms with its density 7.7874g/cm3, atom number 

26, and assuming photon fluence 1014 photons/μm2, photon counts per Shannon pixel ≈ 

0.05 photons/Shannon Pixel and charge density ρ(r) = 2.2 electrons/A3. As observed 

through the calculation by Eq. (20), photon counts/Shannon pixel ≈ 0.05 indicates that 
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adding noises onto the simulated DPs would barely affect the parameters we need. The 

procedures done by our developed algorithms show that there is no need for a hit-finder 

program [55] to reject multiple particle hits. In fact the particle-number-dependent scaling 

factors are the same for the pair and two-point triple correlations. Consequently it is not 

necessary to know at the outset exactly how many particles there are in the ensemble since 

both the pair correlation and two-point triple correlations are derived from diffraction 

patterns with exactly the same number of particles. The possibility using diffraction 

patterns possibly from multiple particles adds considerably to the capability of the use for 

XFEL for structure determination of individual particles as it will add greatly to the “hit-

rate”. Our simulation suggests that here maybe even advantages to considering diffraction 

patterns from ensembles of multiples in terms of convergence. We believe there is no other 

method that has been proposed for XFEL structure determination that has this ability from 

multiple particles per shot with independently random particle orientations.  

 

6.3 Some other examples from different configurations and models result in successful 

Images. 

We examine a bit more complicated azimuthally symmetric model and by placing two 

nanorice particles in a relatively small confined spherical space where these two particles 

easily touch without overlapping. The procedures led to the successful 3D images of the 

particles. Fig 41 and Fig 42 show the models that are used in 3D imaging process and 

those reconstructed final images. The simulations in Fig 41 and Fig 42 have been 

performed beforehand to justify the one in Fig 37.  The specification of an ellipsoidal 
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shape of nanorice particle used here that has long radius of 1000Å and short radius of 

333Å are placed where the centers of the particles are place in the spherical region of 

radius = 1000Å. Fig 43 shows the more complicated shape of single particle of azimuthally 

symmetric model resembling d-orbital, is also adopted for this whole 3D imaging 

procedures with 2000 DPs to verify to get the right reconstructed image. 

 

 

 

 

 

Fig 42. The centers two nanorices with long radius = 1000Å, short radius = 

333Å are placed in a spherical region of radius = 1000Å and an X-ray shot is 

simulated onto these particles. The difference of images from diffraction 

patterns for incoherent and coherent cases is shown. The final image after 

processing all the work from this set up is the same as the one on Fig 41. 

 

 

 

 

 

 

Fig 43. Another azimuthally symmetrical model has been adopted in one of our 

simulations for a test to verify if our algorithm works.  
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6.4 Photon-Counts/Shannon-Pixel Treatment 

Now, we want to testify if the two nanorice particle 3D imaging procedure is possible with 

diffraction patterns generated by LCLS by examining the number of photons in a Shannon 

pixel. By lowering down the number of photons in the diffraction patterns with Poisson noise 

added, it is observable how the 3D reconstructed images of two nanorice particles change 

according to the photon-count/Shannon pixel. After accessing 100000 DPs of randomly 

oriented two nanorice particles in a cylindrical space as Fig 44 shows that 0.05 ph/SP seems to 

be the marginal threshold noise level under the assumption that the photon fluence in LCLS is 

approximately 106 photons/Å2. 

 

Fig 44. The top figures indicate that the noise level of 0.01 ph/SP failed the 

reconstructing image. 0.05 ph/SP seems marginal threshold noise level to get the 

decent reconstructed 3D image of two nanorice particles from 100000 DPs. 

From the left, Rf = 0.1731,  0.1737,  0.1726,  0.1650,  0.1629. 

 

The above figures are from the one hundred thousand simulated diffraction patterns of two 

nanorice particles. If this performance is held in LCLS, probably more many diffraction 

patterns should be collected with the current photon fluence and noise, since the quality of 
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experimental data far worse than that of simulated ones. Photon fluence may be the 

important factor to perform the 3D reconstruction imaging process with small sized 

particles (size < 50Å). 
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Chapter 7 

The 3D imaging process with real experimental data and those results 

In this chapter, we are going to deal with real experimental data and show all the steps by 

which the data are treated. Brief diagram for equipment set up is shown in Fig 45. An 

incident X-ray pulse probably has some variations of its strength, more as strong in the 

center and weak at the edge. In RDV data collection from an SPI group [56], the photon 

energy E = 1.6keV was used, so the wavelength λ = hc/E = 7.756Å where h is the Plank’s 

constant and c is the speed of light. The distance between two adjacent pixels in the 

detector is about 7.5x10-5m, but in RDV case 4 times down sampling is achieved. Thus Δp 

= 4(7.5x10-5m) = 3.0x10-4m. Fig 45 shows how to get qmax by setting up equations as 
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From (59) and (60), 
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Therefore, Eq. (61) gives us qmax ≈ 0.054Å-1. As we take qmax ≈ 0.054Å-1, we want to take 

lmax=20 by lmax ≈ qmaxR with the radius of RDV ≈ 375Å. Once qmax value is obtained, we 

need to interpolate intensities in Cartesian grid points into polar grid points. There are 

some difficulties in the interpolation process. Since the raw data of intensities in Cartesian 

grids as in Fig 46 contain zeros and negative numbers, those negative numbers are changed 
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to zeros. After converting all intensities on Cartesian grids to only zeros and positive 

numbers, finding centers of each DP will be an important issue to make already developed 

algorithms work. 

 

 

 

 

 

 

 

 

 

 

 

Fig 45. This diagram shows a brief equipment set up to collect Cartesian 

diffraction patterns for Rice Dwarf Virus (RDV).  

 

 

Through the equipment set up as in Fig 45, the collected Cartesian raw diffraction patterns 

have many zeros in the middle columns where a couple of detectors are connected. Also 

there are lost intensities around the center, since the detectors are designed to let the 

incident X-ray pulse pass through the center to protect them from the strong intensities. Fig 

46 shows the DPs of lost central intensities. These lost intensities are supposed to be 

resumed by the Rayleigh scattering amplitude function to make the image processing 

possible.  
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Fig 46. 2D images from DPs of RDV raw data. The central parts of the images 

indicate that there are lost central intensities in Cartesian DPs and that these lost 

should be resumed in some appropriate methods introduced in Chapter 5. 

 

7.1 Find Centers in Each Diffraction Pattern 

DPs of RDV raw data consisting of intensities on Cartesian grid points do not give us the 

exact locations of centers for each DP. Thus, we need to find them by using symmetric 

characteristics observed in most of simulated data. Our work for finding each center of DP 

is based on Friedel’s Law [57][58] that intensities in DPs are distributed Centro-

symmetrically about the center. The Freidel’s Law defined as 

  drriqqfqF 




 )(exp)()(        (62)   

and has the following property 

  .)()()()(
2

*2* qFqFqFqF      (63)   

From all simulated DPs on flat Ewald Spheres, one can observe that all intensities are 

Centro-symmetric. However, real experimental data do not follow those nicely distributed 

form. Thus we want to focus only on the central region where strong intensities are 



www.manaraa.com

 

67 
 

recorded. Fig 47 shows how to find a center by comparing the strong central intensities 

around a point that we assume the center. If we take all pairs of intensities in experimental 

DPs to apply Friedel’s Law for finding a center, that would be a crucial mistake since all 

experimental data are not Centro-symmetric while simulated ones are. 

 

 

 

 

 

 

 

Fig 47. When Friedel’s Law applied in experimental DPs for finding a center, 

only the central region where strong intensities are recorded should be 

considered while in simulated DPs, all possible pairs in the whole region is 

considered. Since the experimental data do not follow the Centro-symmetric 

property precisely. 

 

 

7.2 Interpolation of Intensities from Cartesian grids to Polar grids 

After converting all negative intensities in raw DPs into zeros, we could find centers from 

the central regions of Cartesian DPs using Friedel’s Law through comparing pair 

intensities as in Fig 47 by taking pairs of minimum intensity differences between the two 

grid points. Taking average coordinate values of these chosen pairs give us the center of a 
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DP. Once the centers of DPs are found, it is necessary to rearrange the DP matrices by 

adjusting column and row sizes so that the new centers are supposed to be located at the 

middle of each square DP. Now, we interpolate these Cartesian DPs into Polar DPs as 

shown in Fg 48.   

 

Fig 48. Polar DPs are obtained by interpolating Cartesian DPs. The red 

rectangular spots show the maximum column values. Blue rectangular spots 

show also the maximum column values, but considering the values on the same 

rows, it is far less than the row averages.  

 

As illustrated in Fig 48, each column contains very weak intensities at low q, even at lower 

q’s than q’s of column max intensities. Thus, we need to remove these weak intensities to 

prepare for the extrapolation into the beam stop shown as in Fig 49. The columns of red 

highlighted intensities will be used to extrapolate into the region of lost central intensities. 
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The columns of blue highlighted intensities would be ignored for Rayleigh tracing, since 

these numbers are too low as column maxima so that the errors could occur sizably in 

calculation procedures to achieve a 3D image. Almost 85% of experimentally recorded 

intensities are less than 10 and 35% of zeros while the maximum intensities of each 

column are about order of 103 ~ 104. This is why we are bound to focus on the strong 

intensities around centers, since these much strength of recorded intensities could give us 

some trust for precisions of calculations. Even though we consider noise added to the 

intensities, strong intensities are affected much less in the calculations of average values 

such as C2 and C3 as in Eq. (22) and (23). Fig 49 shows that the red highlighted column 

maxima are to be employed by a fitting method using analytical scattering amplitude while 

the blue highlighted column maxima are not.    

Fig 49. The intensities at lower q’s than at q’s of column maximums are 

eliminated to prepare for the intensity extrapolations into the region of lost 

central intensities. 
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7.3 Scattering Amplitude is used for Extrapolations into Beam Stops 

As we test in section 5.2, even though DPs with lost intensities at low 5% of qmax, it is still 

possible to do all procedures for achieving a 3D image of a sample. Thus, this technique is 

used to extrapolate into the region of lost intensities of at low 0.05qmax. Fig 50 shows that 

the dashed arrows indicate how many lost intensities are resumed in a column using the 

square of scattering amplitude function.  

 

Fig 50. The dashed arrows indicate how many lost intensities are extrapolated 

into the region of lost central intensities using scattering amplitude formula. 

Considering qmax = 121
st

 row, 6
th

 row where the extrapolations into the lost 

region are ended, is about a bit lower than 0.05qmax. 

 

In Fig 50, if the maximum intensity in a column is too low, then these columns are not 

participated in intensity extrapolations, since the low column maxima can cause somewhat 
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big errors in calculation procedures so that it would be difficult to make the appropriate 

images. In simulation DPs, the intensities do not change very much along the angular 

positions unlike the row q7 of  DP1 in Table 1. 

 

 

Fig 51. From Fig 50, each column is fitted using scattering amplitude formula as 

in Eq (43) function that is used for extrapolations into beam stops. Each column 

has different beam stops as shown in this figure. 

 

 

 

Fig 51 indicates that if we select quite trustful columns of strong intensity maxima and use 

them to extrapolate into beam stops, then those selected ones would help us to go on to the 

next step calculations. After filling into beam stops with resumed intensities using 

scattering amplitude function, we are supposed to check the intensities at q ≈ 0.05qmax and 

recognize that we need to normalize the average intensities at that q. 
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7.4 Sort and Normalize the Average of the Intensities at 0.05 qmax. 

 

As we can see in Table 2, at q ≈ 0.05qmax, the intensities are consistent irrespective of 

angular positions or orientations in simulated DPs. Considering shot to shot incident X-ray 

pulse variations, the average of intensities at q ≈ 0.05qmax varies as in Table 1. We 

followed the steps introduced in this chapter to overcome the artifacts appeared in 494 

experimental diffraction patterns of Rice Dwarf Virus from SPI [59], with the specification 

as in Fig 45, and compared C2(q,q,Δϕ) and Bl(q,q) at q ≈ 0.018Å-1 with those from pdb-file 

(entry# : 1uf2) as in Fig 52. After performing all the procedures explained in this chapter, 

we could get the 3D reconstructed image of RDV with decent icosahedral shape, not 

perfectly though. 

 

 

Fig 52. When 494 RDV experimental diffraction patterns are accessed through 

the procedures introduced in this chapter, the similarity between C2(q,q,∆ϕ) and 

Bl(q,q) from PDB file and those from the experimental data is found. The peaks 

in Bl(q,q) at l=0, 6, 10, 12, 16, 18, 20 from the experimental data give a hint to 

make the 3D reconstruction image possible. 
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Similar procedures have been performed with 198 mimi virus experimental diffraction 

patterns [60]. The peaks as in Fig 53 appeared at the allowed l-values for icosahedral 

symmetry in some Bl(q,q) vs. L plots.  

Fig 53. One hundred ninety eight experimental diffraction patterns of mimi virus 

are accessed. The size is approximately 4500Å, incident photon energy ≈ 

1.2KeV, detector pixel size ≈ 75μm, distance between the detector and the 

sample ≈ 0.74m, the number of detector pixels ≈ 1000x1000. It is observed that 

the peaks appeared at the allowed l-values for icosahedral symmetry. 

 

With Bl(q,q) and Tl(q,q), one could get the diffraction volume through the algorithm using 

Eq. (26)~(30). And the iterative phasing algorithm would generate the 3D reconstructed 

images as in Fig 54 for RDV and mimi viruses. 

 

 

 

Fig 54. The left side shows 3D image of RDV(entry#:1uf2_pdb1), the middle 

image is from 494 RDV experimental DPs with res ≈ 120Å and the right side 

image is from 198 experimental DPs of mimi virus res ≈ 500Å through the 

procedures that we have developed in this research. However, the right side 

image for the mimi virus should be reexamined since its size appeared a bit 

smaller than expected. 
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To find the resolution for the 3D imaging process of RDV experimental data, we used FSC 

(Fourier Shell Correlation) [61][62] method by dividing 494 diffraction patterns into two 

sets of 247 DPs. Once the charge densities of each set are obtained after performing the 

phasing process, one could get 3D amplitude maps in the reciprocal space. Fig 55 shows 

that two sets of each 247 DPs of RDV diffraction patterns are performed separately to get 

3D reconstructed images. 

 

Fig 55. The first two images from the left, two sets of each 247 DPs of RDV 

diffraction patterns are performed separately to get 3D reconstructed images. 

The right image is for 494 DPs. The resolution by FSC shows ≈ 220Å. 

 

Fourier Shell Correlation is a method to compute over successive shells of certain radius 

and width, but it directly compares the two Fourier transforms as in Eq. (64). Through the 

plot of FSC(q) vs. q, one could get the resolution by selecting the q value at FSC(q) = 0.5. 
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A1(qi) and A2(qi) are amplitudes of the first and second shell-elements of radius q in the 

reciprocal space. 
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Fig 56 shows the Fourier Shell Correlations through the plot for FSC(q) vs. q. 

 

 

 

 

 

Fig 56. Charge Densities after separating 494 RDV experimental DPs into two 

sets of 247 DPs are obtained. FSC is performed to get the resolution. Resolution 

≈ 220Å. 

 

It is observed that the resolution from FSC for the experimental data is greater than the 

one, 1/qmax used for simulated data. In RDV experimental data, the resolution ≈ 1/qmax ≈ 

110Å. By FSC, the resolution ≈ 1/0.0045Å-1 ≈ 220Å.  
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    Chapter 8 

Discussion and Conclusion 

Approximately 40% of all kinds of biomolecules cannot be crystalized [9]. “Diffract before 

Destroy” experiments with ultrashort durations and ultra-bright XFEL pulses generating 

diffraction patterns on digital detectors give us good chances to reconstruct the 3D images 

of uncrystallized individual biomolecules [63]. Some membrane proteins or viruses are 

difficult to be crystalized. Although half a million proteins have been sequenced, their 

structures of about 10% have been determined so far (www.pdb.org). In spite of 

crystallizing deficiencies for those nanoparticles, the “Diffract before Destroy” 

experimental technique provides an unprecedented opportunity to determine the structures 

of uncrystallized particles. Using this technique, at the LCLS (Linac Coherent Light 

Sources) [64] in Stanford, CA. performed a few experimental procedures for relatively 

large objects such as viruses that produce low resolution diffraction patterns, amongst 

which we obtained the data of mimivirus [58], RDV, PR772 and PBCV1. One of the 

methods for reconstructing 3D images of the objects is angular correlations between 

intensities in DPs. The method of angular correlations recovers quantities from diffraction 

patterns of randomly oriented particles, as expected to be measured at an X-ray Free 

Electron Laser (XFEL) proportional to quadratic functions of the spherical harmonic 

expansion coefficients of the diffraction volume of a single particle. We have already 

illustrated that it is possible to reconstruct a randomly oriented icosahedral virus, helical 

virus or some other nanoparticles such as nanorice particles from the average over all 

measured diffraction patterns of such correlations through computer generating simulated 

data. However, when we deal with real experimental data, many artifacts should be 

http://www.pdb.org/
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considered, for example, the effect of water, noise, shot to shot variations of strength of 

incident X-ray pulses, curved Ewald Sphere, lost central intensities, off set of centers in 

each diffraction pattern, involvement of a lot of zeros on the Cartesian grid points of the 

detectors, chemical affinity between biomolecules, or multi particle scattering, etc. We 

introduced a couple of methods how to refine the raw data of diffraction patterns from 

experiments, to overcome those artifacts and perform the calculation procedures that have 

already been developed for enabling 3D imaging process. For one instance, shot noise can 

be overcome by taking many more diffraction patterns so that the averaging the product of 

intensities would significantly reduce the noise effect. Applying the methods introduced in 

this paper has many small difficulties in handling the real experimental data though, since 

the obtained diffraction patterns have their unknown irregularities in recorded intensities 

that can cause bad precisions of interpolations for intensities from Cartesian grids to polar 

grids, which is an important initial step to go on the next level of calculations. This may be 

resolved by eliminating some untrustworthy features such as extremely low intensities in 

beam stop area and filling in the region of lost central intensities with the extrapolated 

values by an intensity fitting [48] mentioned in section 7.3. The problem created by shot-

to-shot variations in incident strength of X-ray pulses can be accommodated by selecting 

full-hit diffraction patterns from those of partial hits and by normalizing the intensities on 

polar grid points. We also showed possibilities to handle multi particle scatterings by 

adopting two nanorice particles as a sample when we simulated X-ray shot and make 

diffraction patters. The procedures succeeded in finding charge densities of single nanorice 

particle through simulated diffraction patterns from two nanorice particles. It is found that 

the curves of C2(q,q,∆ϕ) coincide between the coherent and incoherent scatterings except 
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when ∆ϕ is zeros and π. We have suggested how to deal with this difference. These 

simulations were performed assuming an incoherent source of X-rays as the intensity from 

many particles is assumed to be the sum of intensities from single particles. This is 

possible due to the random positions of the particles. Thus, the distinction with the 

coherent case is not very important over most of the range of the correlations, as the 

randomness of particle positions give the scattering a kind of incoherence [65]. 

Furthermore, it would be worth trying more than two particles in the aerosol that will be 

illuminated by the incident X-ray pulse when the diffraction patterns are collected through 

the shots. Nevertheless, the two independently randomly oriented particles are more than 

can be done with most methods from the XFEL structural problem. The angular correlation 

method leaves a cautiously optimistic anticipation to attain single particle charge density 

from the diffraction patterns of multiple particle (more than two) scatterings. Moreover we 

showed that, even if a small object (of the size of a few Angstroms) exposed in X-ray shots 

gives very small number of photons on the detector (0.01 ph/SP), these diffraction patterns 

can achieve the 3D imaging of the object even for a curved Ewald Sphere using twelve 

atom cluster model. When we access the RDV experimental data, there are two distinctive 

features that are very different from the simulated ones. The first is that there are lost 

central intensities and shot to shot variations in each diffraction pattern with different 

centers. Second is that the distribution of photons on the 2D detector is not similar as we 

observed in the simulated data. However, the extrapolations into the beam stop using an 

analytic scattering amplitude after eliminating the irregular intensities around the center 

could resolve the difficulties in recovering 3D image of RDV. Even though we tried 
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methods introduced in previous chapters, there are still many problems to be solved such 

as phasing or finding angular correlations precisely even when all artifacts are eliminated. 

To sum up what we have done through the research, we showed three major achievements.  

 First, in the presence of Poisson noise, using one million simulated DPs of viruses and 

a twelve atom cluster model, we reconstructed a 3D structural image at atomic 

resolution (at least in the latter case) at photon counts of 0.01 photons/Shannon Pixel 

successfully through the angular correlation method. 

 Second, angular correlation method also enables the diffraction patterns from multiple 

particle scattering to be performed to get a 3D reconstructed structure of a single 

particle. We achieved this using simulated diffraction patterns with two nanorice 

particles of 50Å length each.  

 Lastly, we reconstructed the 3D electron density of a RDV virus at the resolution of 

220Å for the first time with an angular correlation method from the real experimental 

data collected from LCLS. 

The incipient future endeavor would be the elimination of solvent scattering, perhaps 

through a Babinet argument since all living biomolecules contain large portion of water. 

Intensities in diffraction patterns generated by the scattering from water and biomolecules 

should be distinguished. Observations for the artifacts that hinder the reconstruction of the 

structure of nanoparticles are to be followed and the remedies have to be studied more for 

the better resolution of 3D images of samples of interest. We would also like to be free 

from imposing symmetry that is used to get diffraction volumes. In our algorithm, we 

impose icosahedral or azimuthal symmetry in getting diffraction volumes even though we 
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do not impose any constraints and symmetry in phasing. The brightness of XFEL is also to 

be studied when we consider the scattering from a small sized object (few Angstroms) 

containing small number of atoms that will leave very small number of photons on the 

detector. More realistically, we can simulate diffraction patterns with all possible artifacts, 

such as solvent, weak intensities of XFEL for small objects, chemical affinity between 

objects (as used in multi particle scattering), shot-to-shot variations of incident X-ray 

pulses, curved Ewald Spheres, lost central intensities, off-set of centers in each diffraction 

pattern. Developing algorithms with all possible artifacts adopted at the same time can give 

us some directions how to handle the real experimental data. Later on, some other XFEL 

research centers will open soon in Europe, South Korea, and Switzerland [66]. If we have 

chances to get the experimental data from those recent XFEL research centers, there will 

be more expectable opportunities to realize 3D imaging process more clearly and precisely 

for nanoparticles of our interest. The following Table shows the contingent schedule of 

beam operations for some XFEL research centers and mostly will open one year later than 

these operations with beams as the following diagram. 
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Appendix A 

Find The Center of Each Diffraction Pattern 

function getCenterByKim(prd) 
minI = 100 ; ps = size(prd,3) ; rcI = [] ; GC = [] ; % GC=Grand-Center ;  
for p=1:ps 
    PC = [] ; 
    for c=1:30 
        for r=1:63 
            if(prd(r,c,p) > minI) 
                %======================================================== 
                rcI = [] ; % rcI(1827x3) 
                for co=35:63  
                    for ro=1:63 rcI = [rcI;ro co prd(ro,co,p)] ; end 
                end             
                %======================================================== 
                mA = [] ;  

                dI = abs(rcI(:,3) - prd(r,c,p)) ; % dI = difference  
                mA = find(dI == min(dI)) ; % min Diffence Array 

  
                cent = [] ; rc = 0 ; cc = 0 ; mcr = 0 ; mcc = 0 ; 
                for chk=1:length(mA) 
                    rc = (r + rcI(mA(chk),1))/2 ; 
                    cc = (c + rcI(mA(chk),2))/2 ; 
                    cent = [cent;rc cc] ;                    
                end 
                % mcr=mean-center-row, mcc=mean-center-col 
                mcr = mean(cent(:,1)) ; mcc = mean(cent(:,2)) ;  
                PC = [PC;mcr mcc] ; clear cent ;  
            end  
        end 
    end 
    mPCr = 0 ; mPCc = 0 ; mPCr = mean(PC(:,1)) ; mPCc = mean(PC(:,2)) ;  
    GC = [GC;mPCr mPCc] ; clear mPCr mPCc PC ; 
end 
save('GC.mat','GC') ; 
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Appendix B 

Find C2, C3 through Point by Point 

function getC2C3bypts(Cpdp) 
% Be careful ! ==> in the middle of a row, there are many 0's 
[r c p] = size(Cpdp) ;   % r = 33, c = 360, p= 182 
C2 = zeros(360, r, r); C3 = zeros(360, r, r) ; % C2,C3 = 360x33x33 

  
for dphi = 0 : 359 
    for q1 = 1 : r                
        for q2 = 1 : r % decide dphi, q2, q1. 
            % s1, s2 = 1x360 row-vectors : s3, s4 = 1x360 row-vectors :  
            s12N = 0 ; s12 = [] ; s34 = [] ;  
            %================================================= 
            for page = 1 : p 
                s1 = 0 ; s2 =0 ; s3 = 0 ; s4 = 0 ; q = zeros(3,360) ; 
                q(2,:) = Cpdp(q1,:,page) ; 

                q(1,:) = circshift(Cpdp(q2,:,page),[0,-dphi]) ; 
                q(3,:) = circshift(Cpdp(q2,:,page),[0, dphi]) ; 
                s1 = q(1,:).*q(2,:) ; s2 = q(3,:).*q(2,:) ;  
                s3 = q(1,:).*(q(2,:).^2) ; s4 = q(3,:).*(q(2,:).^2) ;  
                s12 = [s12 s1 s2] ; s34 = [s34 s3 s4] ;  
            end 
            s12A = find(s12 ~= 0) ; s12N = 0 ; 
            s12N = length(s12A)   ; clear s1 s2 s3 s4 s12A ; 
            if(s12N > 0)  
                C2(dphi+1,q1,q2) = sum(s12)/s12N ; 
                C3(dphi+1,q1,q2) = sum(s34)/s12N ;  
            end  
            %================================================= 
        end 
    end 
end 

  
save('c2.mat','C2'); 
save('c3.mat','C3'); 

 

 

 

 



www.manaraa.com

 

92 
 

Appendix C 

Extrapolations into Beam Stops 

function [Rdp, Rmean] = RayTrace3(maxR) 
% In this program, the ultimate goal is  
% to find radius-optimal & const-optimal in Rayleigh-Fomula.(rop, cop) 
minI = 10 ; qmax = 0.05076 ; rmx = 2 ; Rdp = maxR ;  
rs = size(Rdp,1) ; cs = size(Rdp,2) ; ps = size(Rdp,3) ; Rmean = [] ; 
dq = qmax/(rs-1) ; q = (0:rs-1)'*dq ;  E = zeros(rs,1) ; R = E ; 

  
% VERY IMPORTANT ::: How many cells in A column do you use as references? 
% VERY IMPORTANT ::: ex) fin = 30, fin = 20, fin =rs ... (Total qPts = 121) 
% HERE : 30/121, 20/121, rs(=121)/121, ....(for Least-Squae-Fit-difference) 
fin = 50 ;  

  
% r(:,1)=Radius , r(:,3) = 16pi^2*rho = C 
% r(:,2) = DistanceSquare From Rayleigh-values (Using Least Square) 
r = zeros(101,3) ; r(:,1) = (270:370)' ;  

  

  
for p=1:ps 
    Rmean0 = [] ; Rmean1 = [] ; 
    for c=1:cs 

  
%========================================================================== 
%************************************************************************** 
%========================================================================== 
    E(:) = Rdp(:,c,p) ;  
    if(max(E) > minI) 
        a = find(E>0) ; st = a(1)   ; clear a ; 
    for ri=1:length(r(:,1)) 
        %================================================================== 
        % Rayleigh Fill-In 
        for i=st:fin  
            R(i)=(sin(q(i)*r(ri,1)) - 

q(i)*r(ri,1)*cos(q(i)*r(ri,1)))^2/q(i)^6; 
        end 
        qER = [q(st:fin) E(st:fin) R(st:fin)] ; 

         
        % tc = temporary column 
        tc = E(st:fin) ; ed=length(tc) ; 
        nzA = find(tc~=0) ; zA = find(tc==0); 
        if(tc(end)==0) nzA=[nzA ; ed] ; zA(end) = [] ; end % ed=end 
        y = interp1(nzA, tc(nzA), zA) ; tc(zA) = y ; clear nzA zA ; 
        EA = 0 ; EA = dq*sum(tc) - 0.5*dq*(tc(1)+tc(ed)) ; 
        %================================================================== 
        % Find Area of Rc 
        xmin = qER(1,1) ; xmax = qER(end,1) ;  

                          fun=@(x) ((sin(x.*r(ri,1))–(x.*r(ri,1)).*cos(x.r(ri,1))).^2./(x.^6); 
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        RA = integral(fun,xmin,xmax) ; C = EA/RA ; qER(:,3) = C*qER(:,3) ; 
        %================================================================== 
        sum0 = 0 ; for j=1:ed sum0=sum0+(qER(j,2)-qER(j,3))^2; end 
        r(ri,2) = sum0 ; r(ri,3) = C ;       
    end 

     
    rA = find(r(:,2) == min(r(:,2))) ; r_idx = rA(1) ; clear rA ; 
    rop = r(r_idx,1) ; cop = r(r_idx,3) ; %radius-optimal, constant-optimal 

     
%========================================================================== 
% In the above, I found r(radius), C(constant) for Rayleigh-Formula 
% Rayleigh-Fill-In <<AGAIN>> Using rop(radius-optimal),cop(const-optimal) 
%========================================================================== 
        % Tracing Starts : cf = column filling index  
        % fill in upto rmx : Here, rmx = 2   
        for cf=rmx:st-1 
         E(cf) = cop*(sin(q(cf)*rop) - q(cf)*rop*cos(q(cf)*rop))^2/q(cf)^6; 
        end 
        Rdp(:,c,p) = E ; 

  
    Rmean0 = [Rmean0; rop] ;    
    end 
%========================================================================== 
%************************************************************************** 
%========================================================================== 
    if(length(Rmean0) ~= 0) Rmean1 = [Rmean1 ; mean(Rmean0)] ; end     

     
    end 
    Rmean = [Rmean ; mean(Rmean1)] ; 
end 
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